Supernova Surveys with DRM 1

Estimates by C. Baltay

DRM 1 compared to IDRM

- Main differences as far as Supernovae are concerned:
 - Larger area Imager
 - Longer wavelength limit (2.5 microns vs 2.0)
 - DRM 1 has same dia mirror (1.3 m), DRM 1a has
 1.2 m mirror

Design Reference Mission Comparisons

Feature	IDRM	DRM 1	DRM 1a	DRM	11	DRM 1a
Mirror Dia	1.3 m	1.3 m	1.2 m			
Launch	ATLAS V	ATLAS V	Falcon 9			
Mission Life	5 yrs	5 yrs	5 yrs			
Imager						
Detectors	28 H2RG	36 H2RG	15 H4RG			
Plate Scale	0.18 "/pixl	0.18 "/pixl	0.17 "/pixl			
Area	0.28 sq deg	0.36 sq deg	0.56 sq deg			
A(det)xA(T	0.37	0.48	0.63			
SNe Spectro	slitless	slitless	slitless			
Lambda Max	x 2.0 microns	2.5 microns	2.5 microns			
SNe Survey						
Duration	6 months	6 months	6 months			
Z max	1.2	1.2	1.2		1.3	1.4
Tiers	2	2	2			
No of SNE	1194	1549	2033		1200	1200
FoM	134	160	191			

Effect of Extended Wavelength Range

- Use intrinsic supernova spread as we agreed:
 - Rest frame B band 16 %
 - Rest frame Z band 15 %
 - Rest frame J band 13 %
 - Rest frame H band 12 %
- For the reddest (1.6 to 2.0 μ) band, this wavelength dependence translates into a z dependence, so for the calculations we use the fit $\sigma_{intrinsic} = 0.11 + 0.033 z$
- With the extended wavelength range, could take the reddest filter to be 2.0 to 2.5 μ . For a supernova with a given z this would correspond to a redder band in the restframe, reducing the intrinsic spread by about 10%.
- This would lead to an improved Figure of Merit, OR would allow the survey to go to higher z max.